

FSAN/ELEG815: Statistical Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

4: Training vs Testing

Review

Error measures:

User specified $\mathbf{e}(h(\mathbf{x}), f(\mathbf{x}))$

In-sample:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{e}(h(\mathbf{x}_n), f(\mathbf{x}_n))$$

Out-of-sample:

$$E_{out}(h) = \mathbb{E}_x[\mathbf{e}(h(\mathbf{x}), f(\mathbf{x}))]$$

Outline

- From training to testing
- Illustrative examples
- Key notion: break point
- Puzzle

Example - The Final Exam

Before the final exam, a professor may hand out practice problems and solutions to the class (training set).

Why not to give out the exam problems?

The goal is for the students to learn the course material (small E_{out}), not to memorize the practice problems (small E_{in}).

Having memorized all the practice problems (small E_{in}) does not guarantee to learn the course material (small E_{out}).

The Final Exam

Testing:

- ► The hypothesis is fixed (you already prepared for the test).
- ▶ The hypothesis is tested over unseen data (the test does not include the same practice problems) i.e. *E*_{in} is computed using the hypothesis set.

$$\mathbb{P}[|E_{in} - E_{out}| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

For a large N (number of questions), E_{in} tracks E_{out} (your performance gauges how well you learned).

The Final Exam

Training: Performance on practice problems.

The hypothesis is adjusted (since you know the answers, you repeat a problem until getting it right).

$$\mathbb{P}[|E_{in} - E_{out}| > \epsilon] \le 2M e^{-2\epsilon^2 N}$$

- E_{in} is computed using the practice set.
- Small $E_{in} \rightarrow$ not necessarily small E_{out} . You may have not learned and have memorized the problems solutions.
- *M* is the number of hypotheses to explore.
 Depending on the times you repeat a problem, your performance may no longer accurately gauge how well you learned.

Goal: We want to replace M by another quantity that is not infinity.

FSAN/ELEG815

Where did the M Come from?

The \mathcal{B} ad events \mathcal{B}_m are

 $|E_{in}(h_m) - E_{out}(h_m)| > \epsilon$

Venn Diagram of $\mathcal{B}ad$ events

The union bound consider \mathcal{B}_m as disjoint events:

 $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots \mathbb{P}[\mathcal{B}_M]$

It is a poor bound when there is overlap.

Can we Improve on M?

Yes, bad events are very overlapping

Remember the perceptron:

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if 'approved'} \\ -1 & \text{if 'deny credit'} \end{cases}$$
$$h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$$

Can we Improve on M ?

For the given perceptron (w), consider the out-of-sample error E_{out} and the in-sample error E_{in} :

< □ > < @ > < ≧ > < ≧ > ≧ の Q (~ 8/59)

Can we Improve on M?

Consider a different perceptron w:

 $\triangle E_{out}$ and $\triangle E_{in}$ move in the same direction Area of yellow part increases \rightarrow probability of data points falling in yellow part increases.

Can we Improve on M ?

 $|E_{in}(h_1) - E_{out}(h_1)| \approx |E_{in}(h_2) - E_{out}(h_2)|$ (Both exceed ϵ)

Many hypotheses are similar. In PLA, if we slowly vary \mathbf{w} , we get infinitely many hypotheses that differ from each other infinitesimally.

What can we Replace M with?

Since the input space \mathcal{X} is infinity, the possible hypotheses are infinity.

Instead of counting the hypotheses over the whole input space, consider a finite set of input points.

On a finite set of input points, how many different 'hypotheses' can I get?

Classification by the four perceptrons is different in at least one data point, so we have four different 'hypotheses'.

Four different perceptrons:

What can we Replace M with?

Define dichotomy as different 'hypotheses' over the finite set of N input points.

Definition: Let $\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathcal{X}$. The *dichotomies* generated by \mathcal{H} are

$$\mathcal{H}(\mathbf{x}_1,\cdots,\mathbf{x}_N) = \{(h(\mathbf{x}_1),\cdots,h(\mathbf{x}_N)) | h \in \mathcal{H}\}$$

Hypotheses are seen through the eyes of Npoints only

Vary perceptron until the line crosses one of the points \rightarrow different *dichotomy*.

Dichotomies: Mini-Hypotheses

A hypotheses $h: \mathcal{X} \rightarrow \{-1, +1\}$

A dichotomy $h : \{\mathbf{x}_1, \mathbf{x}_2,, \cdots, \mathbf{x}_N, \} \rightarrow \{-1, +1\}$

Number of hypotheses $\left|\mathcal{H}\right|$ can be infinite.

Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,,\cdots,\mathbf{x}_N)|$ is at most 2^N

Candidate for replacing M.

Ex: The two *dichotomies* in the picture could be: [-1, -1, -1, +1, +1, +1], [-1, -1, +1, +1, +1].

The Growth Function

The growth function counts the \underline{most} dichotomies on any N points

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)|$$

The value of $m_{\mathcal{H}}(N)$ is at most $|\{-1,+1\}^N|$. Hence, the growth function satisfies:

 $\boldsymbol{m}_{\mathcal{H}}(N) \le 2^N$

Let's apply the definition.

Applying $m_{\mathcal{H}}(N)$ Definition - 2D Perceptrons

dichotomies with three points. Dichotomy on 3 colinear points cannot be generated (N = 4)

 $m_{\mathcal{H}}(3) = 8 \qquad \qquad m_{\mathcal{H}}(4) = 14$

Dichotomy here cannot be generated

Note: At most 14 out of the possible 16 dichotomies on any 4 points can be generated.

Outline

From training to testing

Illustrative examples

These examples confirm the intuition that $m_{\mathcal{H}}(N)$ grows faster when \mathcal{H} becomes more complex.

Key notion: break point

Puzzle

Example 1: Positive Rays

 \mathcal{H} is set of $h : \mathbb{R} \to \{-1, +1\}$

$$h(x) = \operatorname{sign}(x - a)$$

Hypotheses are defined on a one-dimensional input space, and they return -1 to the left of a and +1 to the right of a.

Example 1: Positive Rays

N points, split line into N+1 regions. As we vary a we get different dichotomies.

The growth function: $m_{\mathcal{H}}(N) = N + 1$

At most N+1 dichotomies given any N points.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の < ○ 19/59

Example 2: Positive Intervals

 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

Hypotheses defined on a one-dimensional input space, and they return +1 over some interval and -1 otherwise.

FSAN/ELEG815

Example 2: Positive Intervals

N points, split line into N+1 regions.

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{(N+1)!}{2(N-1)!} + 1 = \frac{(N+1)N}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

Dichotomies are decided by end values of interval, we have $\binom{N+1}{2}$ possibilities. Add the case in which both end values fall in the same region.

A set is **convex** if a line segment connecting any two points in the set lies entirely within the set

 ${\cal H}$ consists of all hypotheses in two dimensions that are positive inside some convex set and negative elsewhere

 $\mathcal H \text{ is set of } h: \mathbb R^2 \to \{-1,+1\} \qquad \quad h(\mathbf x) = +1 \text{ is convex}$

How many patterns can I get out of these data points using convex regions?

How many patterns can I get out of these data points using convex regions?

If we consider some outer points to be +1, then all interior points are +1 (not many dichotomies).

Find another distribution of points to get all possible dichotomies using convex regions?

Place N points over the perimeter of the circle. We get all possible combinations (maximum number of dichotomies).

FSAN/ELEG815

Example 3: Convex Sets

$$m_{\mathcal{H}}(N) = 2^N$$

Any dichotomy on these N points can be realized using a convex hypothesis.

The N points are 'shattered' by convex sets.

Note: $m_{\mathcal{H}}(N)$ is an upper bound. The number of possible dichotomies for given data points may be less than 2^N because of interior points.

The hypothesis shatters all points

The 3 Growth Functions

 \blacktriangleright \mathcal{H} is positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

 \blacktriangleright \mathcal{H} is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

 \blacktriangleright \mathcal{H} is convex sets:

$$m_{\mathcal{H}}(N) = 2^N$$

 $m_{\mathcal{H}}(N)$ grows faster when \mathcal{H} becomes more complex.

Back to the Big Picture

Remember this inequality?

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

What happens if $m_{\mathcal{H}}(N)$ replaces *M*?

 $m_{\mathcal{H}}(N)$ polynomial \implies Good

If $m_{\mathcal{H}}(N)$ can be bounded by any polynomial, the generalization error will go to zero as $N \to \infty \implies$ Learning is feasible.

Just prove that $m_{\mathcal{H}}(N)$ can be bounded by a polynomial?

Outline

- From training to testing
- Illustrative examples
- Key notion: break point

It would enable us to proof that $m_{\mathcal{H}}(N)$ can be bounded by a polynomial

Break Point of ${\mathcal H}$

Definition:

If data set of size k cannot be shattered by \mathcal{H} , then k is a break point for $\mathcal H$

 $m_{\mathcal{H}}(k) < 2^k$

The break point k is the number of data points at which we fail to get all possible dichotomies.

A bigger data set cannot be shattered either.

Remember the 2D perceptrons

At most 14 out of 16 dichotomies on any 4 points can be generated.

$$k = 4$$

< □ ▶ < @ ▶ < \ > ↓ < \ > ▶ \ = の < @ 29/59

<ロト<日本

・< 日本

・< 30/59</p>

Break Point - the 3 Examples

 $m_{\mathcal{H}}(k) < 2^k$

• Positive rays $m_{\mathcal{H}}(N) = N+1$

$$k = 1 \qquad m_{\mathcal{H}}(1) = 2 \not< 2^1$$

k=2 $m_{\mathcal{H}}(2)=3<2^2$ \rightarrow break point

Intuitively, remember the positive rays:

$$h(x) = -1$$

$$h(x) = +1$$

$$h(x) = +1$$

$$h(x) = +1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots \quad x_N$$

There is no way for the positive ray to generate:

FSAN/ELEG815

Break Point - the 3 Examples

- ▶ Positive intervals $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$
 - $\begin{array}{ll} k = 1 & m_{\mathcal{H}}(1) = 2 \not< 2^1 \\ k = 2 & m_{\mathcal{H}}(2) = 4 \not< 2^2 \\ k = 3 & m_{\mathcal{H}}(3) = 7 < 2^3 & \rightarrow \end{array}$ break point

Intuitively, remember the positive intervals:

Main Result

We observe how the break point increases with the complexity of the model.

No break point $\rightarrow m_{\mathcal{H}}(N) = 2^N$

Any break point \rightarrow Use k to bound $m_{\mathcal{H}}(N)$ by a polynomial in N

Remember: If $m_{\mathcal{H}}(N)$ can be bounded by any polynomial, the generalization error will go to zero as $N \to \infty \implies$ Learning is feasible.

To consider learning feasible, all that we need to know now is that there exist a break point.

What we Want

Instead of:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad M \quad e^{-2\epsilon^2 N}$$

We want:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad m_{\mathcal{H}}(N) \quad e^{-2\epsilon^2 N}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ♀ ≧ ∽ Q ↔ 33/59

 $\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad \mathbf{m}_{\mathcal{H}}(N) \quad e^{-2\epsilon^2 N}$

Review

Dichotomies:

Growth Function:

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \cdots, \mathbf{x}_N)|$$

Break Point k :

At most 14 out of the possible 16 dichotomies on any 4 points can be generated. k = 4

Maximum # of dichotomies

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 \\ \hline \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bullet \\ \bigcirc & \bullet & \bigcirc \\ \bullet & \bigcirc & \bigcirc \end{array}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ @ 35/59

Bounding the Growth Function

For a given \mathcal{H} , if the break point k is fixed, $m_{\mathcal{H}}(N)$ can be bounded by a polynomial^(*):

Theorem: If $m_{\mathcal{H}}(k) < 2^k$ for some value k, then

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

for all N. The RHS is polynomial of degree k-1.

Note: This ensures good generalization on the Hoeffding's Inequality. ^(*) Proof can be found on the book: Learning from Data, Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin, AMLbook 2012.

Three examples

Let's take the hypothesis sets for which we compute the growth function:

 \blacktriangleright \mathcal{H} is positive rays:

We compute before:

$$m_{\mathcal{H}}(N) = N + 1$$

No need to know anything about the hypothesis set just that break point $k=2\,$

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{1} \binom{N}{i} = N+1$$

Three examples

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

• \mathcal{H} is positive intervals: (break point k=3)

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \sum_{i=0}^{2} \binom{N}{i} = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is 2D perceptrons: (break point k = 4)

$$m_{\mathcal{H}}(N) = ? \leq \sum_{i=0}^{3} {N \choose i} = \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

<□▶ < @ ▶ < E ▶ < E ▶ E の < 38/59

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 39/59

What we Want

Instead of:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad M \quad e^{-2\epsilon^2 N}$$

We want:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad \mathbf{m}_{\mathcal{H}}(N) \quad e^{-2\epsilon^2 N}$$

Let's consider a pictorial proof:

How does $m_{\mathcal{H}}(N)$ relate to overlaps?

Instead of:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad M \quad e^{-2\epsilon^2 N}$$

We wanted:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 \quad m_{\mathcal{H}}(N) \quad e^{-2\epsilon^2 N}$$

but rather, we get:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4 \quad m_{\mathcal{H}}(2N) \quad e^{-\frac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 40/59

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ↔ 41/59

Definition of VC Dimension

The Vapnik-Chervonenkis (VC) dimension of a hypothesis set ${\cal H}$ denoted by $d_{\rm VC}({\cal H}),$ is

Largest value of N for which $m_{\mathcal{H}}(N) = 2^N$

" the maximum number of points ${\mathcal H}$ can shatter"

 $k > d_{\mathsf{VC}}(\mathcal{H}) \implies k$ is a break point for \mathcal{H}

$$d_{\mathsf{VC}}(\mathcal{H}) = k - 1$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ 少 へ ⊂ 42/59

The Growth Function

In terms of a break point k:

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of the d_{VC} :

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{d_{\rm VC}} \binom{N}{i}$$

Maximum power is $N^{d_{VC}}$

FSAN/ELEG815

Examples

VC Dimension and Learning

Result: If $d_{VC}(\mathcal{H})$ is finite, $g \in \mathcal{H}$ will generalize.

- This statement is true independently of:
 - Learning algorithm
 - Input distribution
 - Target function

VC Dimension and Learning

Result: If $d_{VC}(\mathcal{H})$ is finite, $g \in \mathcal{H}$ will generalize.

This statement depends on:

- Final hypothesis
- Hypothesis set

VC dimension depends only on the hypothesis set.

Training samples

Exist a small chance of having a data set that won't allow generalization.

VC Dimension of Perceptrons

Consider the 2D perceptron:

 $d = 2, \ d_{VC} = 3$

In general, for a d-dimensional perceptron:

 $d_{VC} = d+1$

To prove this, we are going to show that:

$$d_{\mathsf{VC}} \leq d+1$$
$$d_{\mathsf{VC}} \geq d+1$$

Putting it Together

VC dimension of a *d*-dimensional perceptron is:

 $d_{\mathsf{VC}} = d + 1$

What is d+1 in the perceptron?

It is the number of parameters $w_0, w_1, ..., w_d$,

Note: The more parameters a model has, the more diverse its hypothesis set is, which is reflected in a larger value of the growth function.

Degrees of Freedom

Parameters create degrees of freedom

of parameters: **analog** degrees of freedom

 $d_{\rm VC}$: translates to degrees of freedom.

Parameters are consider as knobs

The Usual Suspects

Let's see if the correspondence between degrees of freedom and VC dimension holds.

Each hypothesis is specified by the parameter a (one degree of freedom).

Positive Intervals ($d_{VC} = 2$) $\underbrace{\begin{array}{c} h(x) = -1 \\ \hline x_1 \\ x_2 \\ x_3 \\ \hline x_1 \\ x_2 \\ x_3 \\ \hline x_1 \\ x_2 \\ x_3 \\ \hline x_1 \\ \hline x_2 \\ x_3 \\ \hline x_1 \\ \hline x_2 \\ x_3 \\ \hline x_1 \\ \hline x_2 \\ \hline x_2 \\ \hline x_1 \\ \hline x_2 \\ \hline x_2 \\ \hline x_1 \\ \hline x_2 \\ \hline x_2 \\ \hline x_2 \\ \hline x_2 \\ \hline x_1 \\ \hline x_2 \\ \hline x_2$

Each hypothesis is specified by the two end values of the interval (two degrees of freedom).

Not Just Parameters

Parameters may not contribute degrees of freedom:

Example: consider a one-dimensional perceptron $h(x) = sign(w_0 + w_1x)$ where w_0 is a threshold.

$$y = h(x) = \begin{cases} 1 & \text{if } w_1 x > -w_0 \\ -1 & \text{if } w_1 x < -w_0 \end{cases}$$

Creating a cascade of perceptrons:

2 parameters and 2 degrees of freedom.

Eight parameters in this model and still two degrees of freedom.

 $d_{\rm VC}$ measures the **effective** number of parameters.

Number of Data Points Needed

Two small quantities in the VC inequality:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}}_{\delta}$$

If we want certain ϵ and $\delta,$ how does N depend on $d_{\rm VC}$

Let us look at $N^{d}e^{-N}$

Fix $N^{\mathbf{d}}e^{-N} = \text{small value}$

How does N change with d? It is basically proportional.

Rule of thumb:

 $N \geq 10 d_{\rm VC}$

