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Review

I Error measures:
User specified e(h(x),f(x))

In-sample:

Ein(h) = 1
N

N∑
n=1

e(h(xn),f(xn))

Out-of-sample:

Eout(h) = Ex[e(h(x),f(x))]
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Outline

I From training to testing

I Illustrative examples

I Key notion: break point

I Puzzle
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Example - The Final Exam

Before the final exam, a professor may hand out practice problems and
solutions to the class (training set).

Why not to give out the exam problems?

The goal is for the students to learn the course material (small Eout), not to
memorize the practice problems (small Ein).

Having memorized all the practice problems (small Ein) does not guarantee to
learn the course material (small Eout).
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The Final Exam

Testing:

I The hypothesis is fixed (you already prepared for the test).

I The hypothesis is tested over unseen data (the test does not include the
same practice problems) i.e. Ein is computed using the hypothesis set.

P[|Ein−Eout|> ε]≤ 2e−2ε2N

I For a large N (number of questions), Ein tracks Eout (your performance
gauges how well you learned).
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The Final Exam
Training: Performance on practice problems.

I The hypothesis is adjusted (since you know the answers, you repeat a
problem until getting it right).

P[|Ein−Eout|> ε]≤ 2Me−2ε2N

I Ein is computed using the practice set.
I Small Ein→ not necessarily small Eout.

You may have not learned and have memorized the problems solutions.
I M is the number of hypotheses to explore.

Depending on the times you repeat a problem, your performance may no
longer accurately gauge how well you learned.

Goal: We want to replace M by another quantity that is not infinity.
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Where did the M Come from?

The Bad events Bm are

|Ein(hm)−Eout(hm)|> ε

Venn Diagram of Bad events

The union bound consider Bm as disjoint events:

P[B1 or B2 or · · · or BM ]≤ P[B1]+P[B2]+ · · ·P [BM ]

It is a poor bound when there is overlap.
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Can we Improve on M ?

Yes, bad events are very overlapping

Remember the perceptron:

h(x) =
{

1 if ’approved’
−1 if ’deny credit’

h(x) = sign(wTx)
For any perceptron (w): The
line w0 +w1x1 +w2x2 = 0

splits the plane into +1 and −1
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Can we Improve on M ?
For the given perceptron (w) , consider the out-of-sample error Eout and the
in-sample error Ein:
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Can we Improve on M ?
Consider a different perceptron w:

4Eout and 4Ein move in the same direction
Area of yellow part increases → probability of data points falling in yellow part

increases.
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Can we Improve on M ?

|Ein(h1)−Eout(h1)| ≈ |Ein(h2)−Eout(h2)| (Both exceed ε)
Many hypotheses are similar. In PLA, if we slowly vary w, we get infinitely
many hypotheses that differ from each other infinitesimally.
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What can we Replace M with?
Since the input space X is infinity, the possible hypotheses are infinity.

Instead of counting the hypotheses
over the whole input space, consider a
finite set of input points.

On a finite set of input points, how
many different ‘hypotheses’ can I get?

Classification by the four perceptrons
is different in at least one data point,
so we have four different ‘hypotheses’.

Four different perceptrons:
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What can we Replace M with?

Define dichotomy as different
‘hypotheses’ over the finite set of N
input points.

Definition: Let x1, · · · ,xN ∈ X . The
dichotomies generated by H are

H(x1, · · · ,xN ) = {(h(x1), · · · ,h(xN ))|h∈H}

Hypotheses are seen through the eyes of N

points only

Vary perceptron until the line crosses one of
the points → different dichotomy.
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Dichotomies: Mini-Hypotheses

A hypotheses h : X → {−1,+1}

A dichotomy h : {x1,x2, , · · · ,xN ,}→ {−1,+1}

Number of hypotheses |H| can be infinite.

Number of dichotomies |H(x1,x2, , · · · ,xN )| is
at most 2N

Candidate for replacing M .

Ex: The two dichotomies
in the picture could be:
[−1,−1,−1,+1,+1,+1],
[−1,−1,+1,+1,+1,+1].
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The Growth Function
The growth function counts the most dichotomies on any N points

mH(N) = max
x1,x2,··· ,xN∈X

|H(x1,x2, · · · ,xN )|

The value of mH(N) is at most |{−1,+1}N |. Hence, the growth function
satisfies:

mH(N)≤ 2N

Let’s apply the definition.
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Applying mH(N) Definition - 2D Perceptrons

Maximum 8
dichotomies with three

points.

Dichotomy on 3
colinear points cannot
be generated (N = 4)

.

Dichotomy here cannot
be generated

mH(3) = 8 mH(4) = 14
Note: At most 14 out of the possible 16 dichotomies on any 4 points can be
generated.
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Outline

I From training to testing

I Illustrative examples
These examples confirm the intuition that mH(N) grows faster when H
becomes more complex.

I Key notion: break point

I Puzzle
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Example 1: Positive Rays

H is set of h : R→{−1,+1}

h(x) = sign(x−a)

Hypotheses are defined on a one-dimensional input space, and they return −1
to the left of a and +1 to the right of a.
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Example 1: Positive Rays

N points, split line into N +1 regions. As we vary a we get different
dichotomies.
The growth function: mH(N) =N +1
At most N +1 dichotomies given any N points.
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Example 2: Positive Intervals

H is set of h : R→{−1,+1}

Hypotheses defined on a one-dimensional input space, and they return +1
over some interval and −1 otherwise.
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Example 2: Positive Intervals

N points, split line into N +1 regions.

mH(N) =
(
N +1

2

)
+1 = (N +1)!

2(N −1)! +1 = (N +1)N
2 +1 = 1

2N
2 + 1

2N +1

Dichotomies are decided by end values of interval, we have
(
N +1

2

)
possibilities. Add the case in which both end values fall in the same region.
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Example 3: Convex Sets
A set is convex if a line segment connecting any two points in the set lies
entirely within the set

H consists of all hypotheses in two dimensions that are positive inside some
convex set and negative elsewhere

H is set of h : R2→{−1,+1} h(x) = +1 is convex
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Example 3: Convex Sets

How many patterns can I get out of these data points using convex regions?
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Example 3: Convex Sets
How many patterns can I get out of these data points using convex regions?

If we consider some outer points to be +1, then all interior points are +1 (not
many dichotomies).
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Example 3: Convex Sets
Find another distribution of points to get all possible dichotomies using
convex regions?

Place N points over the perimeter of the circle. We get all possible
combinations (maximum number of dichotomies).
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Example 3: Convex Sets

mH(N) = 2N

Any dichotomy on these N points can
be realized using a convex hypothesis.

The N points are ‘shattered’ by
convex sets.

Note: mH(N) is an upper bound.
The number of possible dichotomies
for given data points may be less than
2N because of interior points. The hypothesis shatters all points
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The 3 Growth Functions

I H is positive rays:
mH(N) =N +1

I H is positive intervals:

mH(N) = 1
2N

2 + 1
2N +1

I H is convex sets:
mH(N) = 2N

mH(N) grows faster when H becomes more complex.
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Back to the Big Picture

Remember this inequality?

P[|Ein(g)−Eout(g)|> ε]≤ 2Me−2ε2N

What happens if mH(N) replaces M?

mH(N) polynomial =⇒ Good

If mH(N) can be bounded by any polynomial, the generalization error will go
to zero as N →∞ =⇒ Learning is feasible.

Just prove that mH(N) can be bounded by a polynomial?
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Outline

I From training to testing

I Illustrative examples

I Key notion: break point
It would enable us to proof that mH(N) can be bounded by a polynomial

I Puzzle
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Break Point of H

Definition:
If data set of size k cannot be shattered by H,
then k is a break point for H

mH(k)< 2k

The break point k is the number of data
points at which we fail to get all possible
dichotomies.

A bigger data set cannot be shattered either.

Remember the 2D perceptrons

At most 14 out of 16 dichotomies
on any 4 points can be generated.

k = 4
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Break Point - the 3 Examples

mH(k)< 2k

I Positive rays mH(N) =N +1

k = 1 mH(1) = 2≮ 21

k = 2 mH(2) = 3< 22 → break point

Intuitively, remember the positive rays:

There is no way for the positive ray to generate: • •
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Break Point - the 3 Examples
I Positive intervals mH(N) = 1

2N
2 + 1

2N +1

k = 1 mH(1) = 2≮ 21

k = 2 mH(2) = 4≮ 22

k = 3 mH(3) = 7< 23 → break point

Intuitively, remember the positive intervals:

There is no way to generate: • • •
I Convex sets mH(N) = 2N

break point k = ‘∞’
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Main Result

We observe how the break point increases with the complexity of the model.

No break point → mH(N) = 2N

Any break point → Use k to bound mH(N) by a polynomial in N

Remember: If mH(N) can be bounded by any polynomial, the generalization
error will go to zero as N →∞ =⇒ Learning is feasible.
To consider learning feasible, all that we need to know now is that there exist
a break point.
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What we Want

Instead of:

P[|Ein(g)−Eout(g)|> ε]≤ 2 M e−2ε2N

We want:

P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N
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P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N
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Review

I Dichotomies:

I Growth Function:

mH(N) = max
x1,··· ,xN∈X

|H(x1, · · · ,xN )|

I Break Point k :

At most 14 out of the possible 16 dichotomies

on any 4 points can be generated. k = 4

I Maximum # of dichotomies



36/59

5. Training vs Testing FSAN/ELEG815

Bounding the Growth Function
For a given H, if the break point k is fixed, mH(N) can be bounded by a
polynomial(∗):

Theorem:
If mH(k)< 2k for some value k, then

mH(N)≤
k−1∑
i=0

(
N

i

)

for all N . The RHS is polynomial of degree k−1.

Note: This ensures good generalization on the Hoeffding’s Inequality.
(∗) Proof can be found on the book: Learning from Data, Yaser S. Abu-Mostafa, Malik Magdon-Ismail and

Hsuan-Tien Lin, AMLbook 2012.
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Three examples
Let’s take the hypothesis sets for which we compute the growth function:
I H is positive rays:

We compute before:
mH(N) =N +1

No need to know anything about the hypothesis set just that break point
k = 2

mH(N)≤
1∑
i=0

(
N

i

)
=N +1
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Three examples

mH(N)≤
k−1∑
i=0

(
N

i

)

I H is positive intervals: (break point k = 3)

mH(N) = 1
2N

2 + 1
2N +1 ≤

2∑
i=0

(
N

i

)
= 1

2N
2 + 1

2N +1

I H is 2D perceptrons: (break point k = 4)

mH(N) = ? ≤
3∑
i=0

(
N

i

)
= 1

6N
3 + 5

6N +1
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What we Want

Instead of:

P[|Ein(g)−Eout(g)|> ε]≤ 2 M e−2ε2N

We want:

P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N

Let’s consider a pictorial proof:
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How does mH(N) relate to overlaps?

Instead of:

P[|Ein(g)−Eout(g)|> ε]≤ 2 M e−2ε2N

We wanted:

P[|Ein(g)−Eout(g)|> ε]≤ 2 mH(N) e−2ε2N

but rather, we get:

P[|Ein(g)−Eout(g)|> ε]≤ 4 mH(2N) e−
1
8 ε

2N

The Vapnik-Chervonenkis Inequality
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Definition of VC Dimension

The Vapnik-Chervonenkis (VC) dimension of a hypothesis set H denoted by
dVC(H), is

Largest value of N for which mH(N) = 2N

“ the maximum number of points H can shatter”

k > dVC(H) =⇒ k is a break point for H

dVC(H) = k−1
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The Growth Function

In terms of a break point k:

mH(N)≤
k−1∑
i=0

(
N

i

)

In terms of the dVC:

mH(N)≤
dVC∑
i=0

(
N

i

)

Maximum power is NdVC
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Examples
I H is positive rays: dVC = 1 •

if N = 2, we cannot have • •

I H is 2D perceptrons: dVC = 3 • • •

if N = 4, we cannot have

I H is convex sets: dVC =∞
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VC Dimension and Learning
Result: If dVC(H) is finite, g ∈H will generalize.

This statement is true independently
of:
I Learning algorithm

I Input distribution

I Target function
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VC Dimension and Learning
Result: If dVC(H) is finite, g ∈H will generalize.

This statement depends on:
I Final hypothesis
I Hypothesis set

VC dimension depends only on the
hypothesis set.

I Training samples
Exist a small chance of having a data set
that won’t allow generalization.
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VC Dimension of Perceptrons
Consider the 2D perceptron:

d= 2, dVC = 3

In general, for a d-dimensional
perceptron:

dVC = d+1
To prove this, we are going to show
that:

dVC ≤ d+1
dVC ≥ d+1
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Putting it Together

VC dimension of a d-dimensional perceptron is:

dVC = d+1
What is d+1 in the perceptron?

It is the number of parameters w0,w1, ...,wd,

Note: The more parameters a model has, the more diverse its hypothesis set
is, which is reflected in a larger value of the growth function.
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Degrees of Freedom

Parameters create degrees of freedom

# of parameters: analog degrees of
freedom

dVC: translates to degrees of freedom.

Parameters are consider as knobs
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The Usual Suspects
Let’s see if the correspondence between degrees of freedom and VC dimension
holds.
I Positive rays (dVC = 1):

we cannot have • •
Each hypothesis is specified by the parameter a (one degree of freedom).

I Positive Intervals (dVC = 2)

we cannot have • • •
Each hypothesis is specified by the two end values of the interval (two
degrees of freedom).
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Not Just Parameters
Parameters may not contribute degrees of freedom:

Example: consider a one-dimensional perceptron h(x) = sign(w0 +w1x)
where w0 is a threshold.

y = h(x) =
{

1 if w1x >−w0
−1 if w1x <−w0

2 parameters and 2 degrees of freedom.
Creating a cascade of perceptrons:

Eight parameters in this model and still two degrees of freedom.

dVC measures the effective number of parameters.
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Number of Data Points Needed
Two small quantities in the VC inequality:

P[|Ein(g)−Eout(g)|> ε]≤ 4mH(2N)e−
1
8 ε

2N︸ ︷︷ ︸
δ

If we want certain ε and δ, how does N depend on dVC

Let us look at Nde−N

Fix Nde−N = small value

How does N change with d?
It is basically proportional.

Rule of thumb:

N ≥ 10dVC
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